BAJAKAN28

Minggu, 14 Mei 2017

Pengenalan algoritma



Pengertian
algoritma adalah prosedur langkah-demi-langkah untuk penghitungan. Algoritma digunakan untuk penghitungan, pemrosesan data, dan penalaran otomatis.
Algoritma adalah metode efektif diekspresikan sebagai rangkaian terbatas dari instruksi-instruksi yang telah didefinisikan dengan baik untuk menghitung sebuah fungsi. Dimulai dari sebuah kondisi awal dan input awal (mungkin kosong), instruksi-instruksi tersebut menjelaskan sebuah komputasi yang, bila dieksekusi, diproses lewat sejumlah urutan kondisi terbatas yang terdefinisi dengan baik, yang pada akhirnya menghasilkan "keluaran"  dan berhenti di kondisi akhir. Transisi dari satu kondisi ke kondisi selanjutnya tidak harus deterministik; beberapa algoritma, dikenal dengan algoritma pengacakan, menggunakan masukan acak

Sejarah: Perkembangan dari kata "algoritma"
Asal mula
Kata algoritma datang dari nama matematikawan Persia abad ke-9 Abu Abdullah Muhammad ibnu Musa Al-Khwarizmi, yang hasil kerjanya dibangun dari matematikawan India abad ke-7 Brahmagupta. Kata algorisma awalnya mengacu hanya pada aturan-aturan dalam melakukan aritmetika menggunakan bilangan Hindu-Arab namun berkembang lewat penerjemahan Latin Eropa dari nama Al-Khwarizmi menjadi algoritma pada abad ke-18. Penggunaan kata tersebut berkembang mengikutkan semua prosedur untuk menyelesaikan masalah atau melakukan unit kegiatan.
Simbol diskrit dan yang dapat dibedakan
Penanda-penghitung: Untuk mencatat hewan gembalaan, kumpulan biji dan uang mereka orang dahulu menggunakan penghitung: akumulasi batu atau tanda yang ditoreh pada tongkat, atau membuat simbol diskrit di kerang. Sampai orang Babilonia dan Mesir menggunakan tanda dan simbol, pada akhirnya bilangan Roma dan abakus berkembang (Dilson, p. 16-41). Penanda penghitung muncul dalam sistem bilangan operan aritmetika digunakan dalam mesin Turing dan komputasi mesin Post-Turing.

Manipulasi simbol sebagai "penampung" bilangan: aljabar
Karya dari Geometer Yunani kuno (algoritma Euklid), matematikawan India Brahmagupta, dan matematikawan Persia Al-Khwarizmi (yang darinya isitlah "algorism" dan "algoritma" diturunkan), dan matematikawan Eropa Barat memuncak dalam notasi Leibniz dari rasiosinator kalkulus (sekitar 1680-an):
Abad yang baik dan setengah lebih maju dari masanya, Leibniz mengajukan logika aljabar, sebuah aljabar yang akan menentukan aturan-aturan untuk memanipulasi konsep logika dengan cara yang aljabar biasa menentukan aturan untuk manipulasi angka.

Rancangan mekanis dengan tingkat diskrit
Jam: Bolter memuji penemuan jam gaya-berat sebagai "Kunci penemuan dari Eropa pada Abad Pertengahan", khususnya pada ambang pelarian  yang menyediakan kita dengan tik dan tak dari jam mekanis. "Mesin otomatis yang akurat"  mengarah langsung pada "otomata mekanis" dimulai pada abad ke-13 dan terakhir pada "mesin komputasi" -- motor berbeda dan motor analitik dari Charles Babbage dan bangsawan Ada Lovelace, pertengahan abad ke-19. Lovelace dikreditkan sebagai yang pertama menciptakan algoritma yang ditujukan untuk diproses di komputer—motor analitis Babbage, perangkat pertama yang dianggap komputer Turing-sempurna sebenarnya bukan hanya sebuah kalkulator—dan terkadang dikenal "programmer pertama dalam sejarah", walaupun implementasi penuh dari perangkat Babbage kedua tidak terealisasi sampai beberapa dekade setelah masanya.
Mesin logika 1870 - Stanley Jevons "sempoa logika" dan "mesin logika": Masalah teknisnya adalah untuk mereduksi persamaan boolean bila ditampilkan dalam sebuah bentuk yang pada masa sekarang dikenal sebagai pemetaan Karnaugh. Jevons (1880) pertama menjelaskan "sempoa" sederhana dari "potongan kayu dilengkapi dengan penyemat, dibuat supaya bagian atau kelas kombinasi logika manapun dapat dipilih secara mekanis ... Baru-baru ini Saya telah mereduksi sistem menjadi bentuk yang secara sempurna mekanis, dan membuatnya mewujudkan keseluruhan proses inferensi tak langsung dalam apa yang disebut sebuah Mesin Logika" Mesinnya dilengkapi dengan "beberapa tangkai kayu yang bisa dipindahkan" dan "di bawah ada 21 kunci seperti pada piano [dll] ...". Dengan mesin ini dia dapat menganalis sebuah "silogisme atau argumen logika sederhana apapun".
Mesin tenun Jacquard, kartu berlobangnya Hollerith, telegraf dan telepon -- penyiaran elektromekanis: Bell dan Newell (1971) mengindikasikan bahwa mesin tenun Jacquard (1801), pelopor dari kartu Hollerith (kartu berlobang, 1887), dan "teknologi alih telepon" adalah akar dari sebuah pohon yang mengarah pada perkembangan dari komputer pertama. Pada pertengahan abad ke-19 telegraf, pelopor dari telepon, digunakan diseluruh dunia, pengkodean diskrit dan pembedaan huruf sebagai "titik dan strip". Pada akhir abad ke-19 pita telegraf (sekitar 1870-an) digunakan, sebagaimana juga kartu Hollerith pada sensus Amerika 1890. Kemudian muncullah teleprinter (sekitar 1910-an) dengan kerta-berlobang menggunakan kode Baudot di pita.
Jaringan alih-telepon dari penyiaran elektromekanis (ditemukan 1835) adalah karya dair George Stibitz (1937), penemu dari perangkat penghitungan digital. Saat bekerja di laboratorium Bell, dia mengamati "beratnya" penggunaan kalkulator mekanis dengan geligi. "Dia pulang ke rumah pada suatu malam 1937 berniat untuk menguji idenya ... Saat mengatik selesai, Stibitz telah membangun perangkat hitung digital".
Davis (2000) mengamati pentingnya penyiaran elektromekanis (dengan "keadaan binari"-nya buka dan tutup):
Hanya dengan perkembangan, dimulai sejak 1930-an, dari kalkulator elektromekanis menggunakan penggantian elektris, sehingga mesin yang dibuat memiliki ruang lingkup yang dibayangkan Babbage."

Matematika selama abad 19 sampai pertengahan abad 20
Simbol dan aturan: Dengan cepat berkembangnya matematika dari George Boole (1847, 1854), Gottlob Frege (1897), dan Giuseppe Peano (1888-1889) mereduksi aritmetika menjadi serangkaian simbol dimanipulasi oleh aturan-aturan. The Principles of arithmetic, presented by a new method-nya Peano (1888) adalah "usaha pertama mengaksiomakan matematika dalam sebuah bahasa simbolik".
Tapi Heijenoort memberi pujian pada Frege (1879): Frege "merupakan karya tulis paling penting mengenai logika. ... yang mana kita lihat sebuah "'bahasa formula', yaitu sebuah lingua characterica, sebuah bahasa ditulis dengan simbol-simbol khusus, "untuk berpikir murni", yaiut, bebas dari hiasan retorikal ... dibangun dari simbol-simbol tertentu yang dimanipulasi menurut aturan-aturan terbatas".  Karya dari Frege lebih lanjut disederhanakan dan diperkuat oleh Alfred North Whitehead dan Bertrand Russell dalam Principia Mathematical (1910-1913).
Paradoks: Pada masa yang sama sejumlah paradoks yang mengganggu muncul dalam literatur, pada khususnya paradoks Burali-Forti (1987), paradoks Russell (1902-03), dan Paradoks Richard.  Hasilnya mengarah ke makalah Kurt Godel (1931) -- dia secara khusus merujuk paradoks pembohong—yang mereduksi aturan dari rekursi pada angka.
Penghitungan Efektif: Dalam usaha untuk menyelesaikan permasalahan keputusan yang didefinisikan oleh Hilbert tahun 1928, matematikawan pertama mendefinisikan apa arti dari "metode efektif" atau "kalkulasi efektif" (misalnya, sebuah kalkulasi yang akan sukses). Dalam waktu yang cepat hal berikut muncul: kalkulus-λ oleh Alonzo Church, Stephen Kleene, dan J.B. Rosser definisi dari "rekursi umum" yang benar-benar diasah dari karya Godel berdasarkan saran dari Jacquard Herbrand (cf. kuliah Godel di Princeton tahun 1934) dan penyederhaan selanjutnya oleh Kleene. Church membuktikan bahwa permasalahan keputusan tidak terpecahkan, definisi Emil Post tentang penghitungan efektif yaitu sebagai pekerja yang tanpa berpikir mengikuti suatu daftar instruksi untuk bergerak ke kiri atau kanan lewat sederetan ruangan dan bersamaan dengan itu bisa menandai atau menghapus kertas atau mengamati kertas dan membuat pilihan ya-tidak tentang instruksi selanjutnya. Pembuktian Alan Turing bahwa permasalahan keputusan tidak terpecahkan dengan menggunakan "sebuah mesin [otomatis]"-nya [dengan efek yang mirip dengan "formulasi"-nya Post, definisi J. Barkley Rosser tentang "metode efektif" dalam makna "sebuah mesin". Proposal S. C. Kleene dari pelopor "Tesis Church" yang disebutnya "Thesis I", dan beberapa tahun kemudian Kleene menamakan tesisnya "Tesis Church"  dan mengajukan "Tesis Turing".

Emil Post (1936) dan Alan Turing (1936-37, 1939)
Berikut adalah kebetulan yang luar biasa dari dua orang yang tidak saling mengenal tetapi mendeskripsikan sebuah proses orang-sebagai-komputer mengerjakan perhitungan—dan mereka menghasilkan definisi yang mirip.
Emil Post (1936) mendeskripsikan aksi dari sebuah "komputer" (manusia) sebagai berikut:
"... dua konsep ikut serta: yaitu sebuah simbol ruang dimana pekerjaan yang mengarah dari masalah ke jawaban dilakukan, dan sekumpulan arahan yang baku dan tidak bisa diubah.
Simbol ruangnya yaitu
"sederetan dua arah tak terbatas dari ruang atau kotak... penyelesai masalah atau pekerja harus berjalan dan bekerja di simbol ruang ini, dengan bisanya [si pekerja] masuk, dan beroperasi dengan satu kotak dalam satu waktu... sebuah kotak memiliki dua kemungkinan kondisi, yaitu, kosong atau belum ditandai, dan dengan adanya tanda tunggal disana, katakanlah garis vertikal.
"Satu kotak dibiarkan dan disebut sebagai titik awal. ...sebuah masalah tertentu diberikan dalam bentuk simbolik dengan sejumlah kotak terbatas [yaitu, INPUT] ditandai dengan coretan. Begitu juga jawabannya [yaitu, OUTPUT] diberikan dalam bentuk simbolik dari suatu konfigurasi dari kotak-kotak yang ditandai....
"Sekumpulan arahan bisa digunakan untuk permasalahan umum menentukan proses determistik saat diterapkan pada setiap masalah tertentu. Proses ini hanya berhenti bila datang arahan dengan tipe (C ) [yaitu, STOP]". Lihat lebih lanjut pada mesin post-Turing
Patung Alan Turing di Taman Bletchley.
Karya Alan Turing [87] mendahului karya dari Stibitz (1937); tidak diketahui apakah Stibitz mengetahui karya Turing. Biografinya Turing percaya bahwa Turing menggunakan model seperti-mesin-ketik diturunkan dari ketertarikannya pada masa muda: "Alan memiliki impian menemukan mesin ketik pada saat muda; Ibu Turing memiliki sebuah mesin ketik; dan dia mungkin memulainya dengan menanyakan pada dirinya sendiri apa maksudnya dengan menyebut sebuah mesin ketik dengan 'mekanikal'". Dengan lazimnya kode Morse dan telegraf, mesin pita telegraf, dan mesin-ketik jarak jauh pada waktu itu kita bisa menyimpulkan bahwa semua itu memberikan pengaruh.
Turing—model dari komputasinya sekarang dikenal dengan mesin Turing—memulai, sebagaimana Post, dengan analisis dari komputer manusia yang ia sederhanakan menjadi sekumpulan gerakan dasar sederhana dan "keadaan pikiran". Tapi dia terus maju selangkah ke depan dan membuat sebuah mesin sebagai model dari komputasi angka.
"Menghitung biasanya dilakukan dengan menulis simbol tertentu di atas kertas. Misalkan kertas tersebut dibagi menjadi segi empat seperti buku aritmetika anak-anak.... Saya asumsikan bahwa komputasi dilakukan pada kertas satu dimensi, yaitu, di pita yang dibagi dalam persegi. Juga misalkan bahwa jumlah simbol yang akan dicetak terbatas....
"Perilaku dari komputer disetiap waktu ditentukan oleh simbol yang diobservasinya, dan "keadaan pikiran"-nya pada waktu tersebut. Juga bisa diasumsikan bahwa ada batas B sebagai jumlah simbol atau persegi yang mana komputer dapat amati dalam satu waktu. Jika ia ingin mengamati lebih, ia harus menggunakan pengamatan beriringan. Kita juga memisalkan bahwa jumlah keadaan pikiran yang diperlukan disini adalah terbatas...
"Mari kita bayangkan bahwa operasi yang dilakukan oleh komputer akan dipecah menjadi 'operasi-operasi sederhana' yang sangat mendasar sehingga tidak mudah membayangkannya untuk dibagi lebih jauh."
Reduksi Turing menghasilkan hal berikut:
"Operasi sederhana haruslah mengikutkan:
"(a) Perubahan dari simbol pada salah satu persegi yang sedang diamati
"(b) Perubahan dari salah satu persegi diamati terhadap persegi lainnya di antara L persegi dari salah satu yang sebelumnya diamati.
"Bisa saja beberapa dari perubahan tersebut menyebabkan perubahan keadaan pikiran. Operasi tunggal paling umum oleh karena itu harus diambil jadi salah satu hal berikut:
"(A) Suatu kemungkinan perubahan (a) dari simbol bersamaan dengan suatu perubahan dari keadaan pikiran.
"(B) Suatu kemungknian perubahan (b) dari persegi yang diamati, bersama dengan kemungkinan perubahan dari keadaan pikiran"
"Kita sekarang mungkin sudah bisa membentuk sebuah mesin untuk melakukan pekerjaan dari komputer tersebut."
Beberapa tahun kemudian, Turing mengembangkan analisanya (tesis, secara definisi) dengan ekspresi kuat berikut:
"Sebuah fungsi dikatakan "bisa dihitung secara efektif" jika nilainya bisa ditemukan dengan proses yang murni mekanis.
Walau sangat mudah menangkap ide ini, namun ia membutuhkan beberapa definisi matematikan terbatas yang bisa diekspresikan . . . [dia mendiskusikan sejarah dari definisi seperti di atas dengan menghormati Godel, Herbrand, Kleen, Church, Turing dan Post] ... Kita mungkin gunakan pernyataan tersebut secara harfiah, memahami murni dengan proses mekanis yang mana dapat dilakukan oleh sebuah mesin. Memungkinkan untuk memberikan deskripsi matematis, dalam beberapa bentuk normal, dari struktur mesin tersebut. Perkembangan dari ide ini mengarah pada definisi penulis dari sebuah fungsi yang dapat dihitung, dan untuk mengidentifikasi komputibilitas † dengan penghitungan yang efektif . . . .
"† Kita boleh menggunakan ekspresi "fungsi hitung" untuk mengartikan sebuah fungsi yang dapat dihitung oleh sebuah mesin, dan kita biarkan "secara efektif dapat dihitung" mengacu pada ide intuitif tanpa definisi tertentu dengan salah satu dari definisi tersebut".
J. B. Rosser (1939) dan S. C. Kleene (1943)[sunting | sunting sumber]
J. Barkley Rosser mendefinisikan 'metode [matematis] efektif' dengan cara berikut (kemiringan ditambahkan):
"'Metode efektif' disebut sebagai metode yang spesial yang mana setiap langkahnya secara tepat ditentukan dan pasti menghasilkan jawaban dalam sejumlah langkah yang terbatas. Dengan pengertian khusus ini, tiga definisi berbeda telah diajukan sampai sekarang. [catatan kakinya #5; lihat diskusinya di bawah]. Yang paling sederhana (karena Post dan Turing) menyatakan intinya bahwa sebuah metode efektif menyelesaikan sekumpulan permasalahan hanya ada jika seseorang bisa membuat sebuah mesin yang akan menyelesaikan setiap masalah dari sekumpulan masalah tanpa campur tangan manusia kecuali memasukan pertanyaan dan (nantinya) membaca jawabannya. Ketiga definisi tersebut sama, jadi tidak masalah yang mana yang digunakan. Lebih lanjut, fakta bahwa ketiganya sama adalah argumen yang sangat kuat untuk kebenaran dari salah satunya." (Rosser 1939:225-6)
Catatan kaki Rosser #5 merujuk karya dari (1) Church dan Kleene dan definisi dari definabiliti-λ, secara khusus Church menggunakannya dalam An Unsolvable Problem of Elementary Number Theory-nya (1936); (2) Herbrand dan Godel dan penggunaan rekursi mereka terutama Godel menggunakannya dalam makalah terkenalnya On Formally Undecidable Propositions of Principia Mathematica and Related Systems I (1931); dan (3) Post (1936) dan Turing (1936-7) dalam model mekanisme komputasi mereka.
Stephen C. Kleene didefinisikan sebagai "Thesis I"-nya yang terkenal yang dikenal sebagai tesis Church-Turing. Tapi dia melakukan hal tersebut dalam konteks berikut (penebalan dari aslinya):
"12. Teori-teori algoritma... Dalam menyiapkan sebuah teori algoritma yang komplet, apa yang kita lakukan adalah mendeskripsikan sebuah prosedur, yang dapat dilakukan untuk setiap kumpulan nilai dari variabel-variabel tunggal, yang mana prosedur berhenti dan dengan cara tersebut dari hasilnya kita bisa membaca sebuah jawaban tertentu, "ya" atau tidak", untuk pertanyaan "apakah nilai predikat benar?"" (Kleene 1943:273)

Sejarah setelah 1950
Sejumlah usaha telah diarahkan untuk memperbaiki lebih lanjut definisi dari "algoritma", dan aktivitas tersebut masih terus berjalan karena isu-isu yang mengelilinginya, terutama, fondasi matematika (khususnya tesis Church-Turing) dan filsafat pikiran (khususnya argumen menyangkut kecerdasan buatan). Lebih lanjut, lihat karakterisasi algoritma.

Klasifikasi
Salah satu cara mengklasifikasikan algoritma yaitu dengan cara implementasi.

Rekursi atau iterasi
Sebuah algoritma rekursi yaitu algoritma yang memanggil dirinya sendiri berulang kali sampai kondisi tertentu tercapai, ini merupakan metode umum bagi pemrograman fungsional. Algoritma iteratif menggunakan konstruksi berulang seperti pengulangan dan terkadang struktur data tambahan seperti tumpukan untuk menyelesaikan permasalahan. Beberapa permasalahan secara alami cocok dengan satu implementasi atau lainnya. Sebagai contoh, Menara Hanoi dikenal dengan implementasi rekursif. Setiap versi rekursif memiliki kesamaan (tapi bisa lebih atau kurang kompleks) dengan versi iteratif, dan sebaliknya.

Logical
Sebuah algoritma bisa dilihat sebagai logika deduksi terkontrol. Pernyataan ini diekspresikan sebagai: Algoritma = logika + kontrol.[56] Komponen logika mengekspresikan aksioma yang bisa digunakan dalam komputasi dan komponen kontrol menentukan cara deduksi digunakan pada aksioma. Ini merupakan dasar dari paradigma pemrograman logika. Dalam bahasa pemrograman logika murni komponen kontrol adalah tetap dan algoritma ditentukan dengan memberikan hanya komponen logikanya. Daya tarik dari pendekatan ini adalah semantik elegan: sebuah perubahan dalam aksioma memiliki perubahan dalam algoritma.

Serial, paralel atau terdistribusi
Algoritma biasanya dibicarakan dengan asumsi bahwa komputer menjalankan satu instruksi algoritma setiap waktu. Komputer tersebut terkadang disebut dengan komputer serial. Rancangan algoritma untuk lingkungan tersebut disebut dengan algoritma serial, terbalik dengan algoritma paralel atau algoritma terdistribusi. Algoritma paralel memanfaatkan arsitektur komputer yang mana beberapa prosesor bisa mengerjakan masalah di waktu yang sama, selain itu algoritma terdistribusi memanfaatkan banyak mesin yang terhubung dengan jaringan. Algoritma paralel atau terdistribusi membagi permasalahan menjadi banyak sub-masalah simetris atau asimetris dan mengumpulkan hasilnya kembali. Konsumsi sumber pada algoritma tersebut tidak hanya perputaran prosesor disetiap prosesor tetapi juga daya komunikasi antara prosesor. Algoritma pengurutan bisa diparalelkan secara efisien, tetapi biaya komunikasinya sangat mahal. Algoritma iteratif secara umum bisa diparalelkan. Beberapa permasalahan tidak ada algoritma paralelnya, dan disebut dengan permasalahan serial lahiriah.

Deterministik atau non-deterministik
Algoritma deterministik menyelesaikan masalah dengan keputusan yang tepat disetiap langkah dari algoritma sedangkan algoritma non-deterministik menyelesaikan masalah lewat penerkaan walaupun penerkaan biasanya lebih akurat dengan menggunakan heuristik.

Tepat atau perkiraan
Bila banyak algoritma sampai pada solusi yang tepat, algoritma perkiraan mencari sebuah perkiraan yang terdekat dengan solusi benarnya. Perkiraan bisa menggunakan baik strategi deterministik atau acak. Algoritma seperti itu memiliki nilai guna untuk banyak permasalahan sulit.

Algoritma quantum
Berjalan di model realistik dari komputasi quantum. Istilah ini biasanya digunakan untuk algoritma yang tampak pada dasarnya quantum, atau menggunakan beberapa fitur penting komputasi quantum seperti superposisi quantum atau belitan quantum.

Bentuk Dasar Algoritma
Algoritma sendiri mempunyai tiga 3 bentuk dasar, antara lain :

Algoritma Sekuensial (Sequence Algorithm)
Sequence algorithm atau algoritma sekuensial merupakan algoritma yang langkah-langkahnya secara urut dari awal hingga akhir. Bentuk dari algoritma sekuensial ini salah satu contohnya seperti algoritma memasak air. Langkah demi langkah yang dijalankan harus urut dari atas sampai bawah.

Algoritma Perulangan (Looping Algorithm)
Looping algorithm atau algoritma perulangan merupakan suatu algoritma yang menjalankan beberapa langkah tertentu secara berulang-ulang atau looping. Pada masalah yang kita hadapi, ada pula sebuah langkah yang harus kita lakukan secara berulang-ulang. Contoh dari algoritma looping ini adalah algoritma menjemur pakaian:
1) Siapkan jemuran.
2) Ambil satu pakaian yang nantinya akan dijemur.
3) Peras pakaian tersebut terlebih dahulu.
4) Letakkan pakaian tersebut pada tiang jemuran.
5) Ulangi langkah dari 2 sampai 4 hingga pakaian habis.
Dari algoritma di atas, dapat diketahui bahwa dari langkah 2 sampai 4 harus dilakukan secara berulang-ulang hingga pakaian habis.

Algoritma Percabangan atau Bersyarat (Conditional Algorithm)
Conditional algorithm atau algoritma bersyarat merupakan algoritma yang menjalankan langkah berikutnya apabila terdapat syarat yang sudah dapat dipenuhi. Berikut salah satu contoh dari algoritma bersyarat :
1) Siapkan panci.
2) Masukkan air secukupnya ke dalam panci.
3) tutup panci tersebut.
4) letakkan panci tersebut di atas kompor.
5) Hidupkan kompor.
6) Apabila air sudah mendidih, lalu matikan kompor.
7) Angkat panci tersebut dari kompor.
Algoritma bersyarat atau contional algorithm terdapat pada langkah ke 6. Apabila air sudah mendidih, lalu matikan kompor. Sehingga apabila air tersebut belum mendidih, maka kompor tidak dimatikan.

Ciri Penting Algoritma
1.  Algoritma harus berhenti setelah menjalankan sejumlah langkah terbatas.
2.  Setiap langkah harus didefinisikan dengan tepat dan tidak berarti-dua (ambiguitas).
3.  Algortima memiliki nol atau lebih masukan.
4.  Algoritma memiliki nol atau lebih keluaran.
5.  Algoritma harus efektif (setiap langkah sederhana sehingga dapat dikerjakan dalam waktu yang masuk akal).

Merancang Algoritma yang Baik
Menurut Donald E. Knuth, dari pengertian algoritma diatas dapat diketahui bahwa sebuah algoritma yang baik yaitu algoritma yang mempunyai kriteria sebagai berikut :

Masukan (Input)
Algoritma mempunyai input 0 (nol) atau lebih

Keluaran (Output)
Algoritma harus menghasilkan atau mengeluarkan minimal 1 output.

Terbatas (Finite)
Algoritma harus berhenti setelah melakukan langkah-langkah yang diperlukan.

Pasti (Definite)
Algoritma harus jelas kapan dimulai dan berakhir. Tujuan dari algoritma harus jelas. Setiap langkah-langkah harus dijelaskan dengan jelas.

Efisien
Membuat sebuah algoritma haruslah efisien. Adanya langkah seperti mencari hasil 1 + 0 tidak efisien. Hal ini karena bilangan apapun itu jika ditambah dengan nol maka hasilnya ialah bilangan itu sendiri. Sehingga adanya langkah seperti itu tidak perlu dimasukkan ke dalam sebuah algoritma.

Contoh Algoritma
Algoritma TUKAR ISI BEJANA
Diberikan 2 buah bejana A dan B, bejana A berisi larutan berwarna merah, bejana B berisi larutan berwarna biru. Tukarkan isi kedua bejana itu sedemikian sehingga bejana A berisi larutan warna biru dan bejana B berisi larutan berwarna merah.
Deskripsi:
1.  Tuangkan larutan dari bejana A ke dalam bejana B
2.  Tuangkan larutan dari bejana B ke dalam bejana A

Algoritma TUKAR ISI BEJANA di atas tidak menghasilkan pertukaran yang benar. Langkah di atas tidak logis, hasil pertukaran yang terjadi adalah pertukaran kedua larutan tersebut.
Untuk itu pertukaran isi dua bejana, diperlukan sebuah tambahan sebagai tempat penampungan sementara, misalnya bejana C. Maka algoritma untuk menghasilkan pertukaran yang benar adalah sebagai berikut:

Diberikan dua buah bejana A dan B, bejana A berisi larutan berwarna merah, bejana B berisi larutan berwarna biru. Tukarkan isi kedua bejana itu sedemikian hingga bejana A berisi larutan berwarna biru dan bejana B berisi larutan berwarna merah.
Deskripsi:
1.  Tuangkan larutan dari bejana A ke dalam bejana C.
2.  Tuangkan larutan dari bejana B ke dalam bejana A.
3.  Tuangkan larutan dari bejana C ke dalam bejana B.

Implementasi
Kebanyakan algoritma ditujukan untuk diimplementasikan sebagai program komputer. Namun, algoritma juga diimplementasikan dengan tujuan lain, seperti dalam jaringan saraf biologis (sebagai contohnya, otak manusia yang mengimplementasikan aritmetika atau sebuah serangga yang melihat makanan), dalam sirkuit elektris, atau dalam sebuah perangkat mekanis.








sumber :







                                                                                                          

Tidak ada komentar:

Posting Komentar